Resources

Acknowledgements

Editorial Assistance by Alice Casbara
Designed by Jeff Girard,
Victoria Street Graphic Design, San Clemente, CA
Illustrated by Phil Roberts
All illustrations © 1997 Phil Roberts. All rights reserved.

Notice: This publication may be reproduced by the classroom teacher for classroom use only. This publication may not be reproduced for storage in a retrieval system, or transmitted, in any form or by any means— electronic, mechanical, recording— without the prior permission of the publisher. Reproduction of these materials for commercial resale is strictly prohibited.

Amazon © 1997. All rights reserved.
Printed in USA
Introduction

Great Speaker, River Sea: The Mighty Amazon

ACTIVITY: Top Ten Longest, Top Ten Largest: Famous Rivers of the World

The Amazon Forest: Where Life Overflows

ACTIVITY: Where in the World are Tropical Rainforests?
Create a Rainforest In a Soda Bottle

The Rainforest Is Closer Than You Think

ACTIVITY: Explore the Grocery, Discover the Rainforest Rainforest Recipes

Kingdom of the Ants

ACTIVITY: Happy Trails Significant Achievements
Down and Dirty: Up Close with Ants

The World’s Most Beautiful Roof

ACTIVITY: Swingin’ in the Rain Microhabitats

In the Jungle, The Indian Knows Everything

ACTIVITY: Words from the Forest No Waste

Conservation Hero: The Shaman’s Apprentice

ACTIVITY: What Shamans Know Could Save Your Life

Discover Earth

ACTIVITY: In Your Own Backyard Live Simply So That Others May Simply Live

GLOSSARY, RESOURCES, ACKNOWLEDGEMENTS
To learn about the vast South American rainforest, we must first learn about the heart that gives life to the forest. It is the mightiest river in the world. Its name is *Amazon*.

The Amazon River is born high in the Andes Mountains. It begins as a cold trickle of water, no wider than a mouse. As rain falls and snow melts, other streams from far away flow to meet it. The river grows larger, louder, faster. Indians call it “great speaker.” It rushes over forest cliffs and makes thunderous waterfalls. Sun strikes the mist and a double rainbow appears! The river twists, turns, flattens and widens. In some places it seems like a big, quiet sea. Indians call it “river sea.” This vast, flowing water network is one of the biggest and most mysterious wildlife homes on our planet!

Waters of the Amazon River and its tributaries contain 5,000 different species of fish, with perhaps 2,000 more awaiting discovery. Look closely in these waters, and you might see some tiny, familiar friends. Many fish commonly found in home aquariums are South American freshwater species. Electric eels, secretive stingrays, sharks, and razor-toothed piranhas also swim here. Long-nosed pink river dolphins click and clack and squeak, using echolocation, like the fish-eating bats above them, to find food and avoid obstacles. Gentle giants, the Amazonian manatees, graze on underwater plants and communicate with each other by muzzle-to-muzzle touching and chirps. Giant river otters, one of the most endangered mammals in the world, frolic and play, but become deadly serious when it’s time to eat. All this, and yet only ripples and the odd splash made by a jumping fish give any clue to the abundance of life beneath the water surface.

But the Amazon is much more than just one river. Like veins in a leaf, hundreds of streams join larger ones until they reach the mighty Amazon. The entire area, known as the Amazon basin, is more than ten times the size of France!

Amazon River: Facts and Figures

- From source to sea (the Atlantic Ocean), the Amazon River flows for 4,000 miles.
- It carries more water than any other river in the world.
- The volume of water coming out of the Amazon is enough to fill a million bathtubs in less than a minute!
- The Amazon has more than a thousand major tributaries: ten of these are more than 620 miles in length.
- The river discharges into the Atlantic in a flow so powerful that it dilutes the ocean water for 100 miles.
- It is estimated that it would take 9,000 trains pulling 30 ten-ton trucks every day to carry the same amount of sediment as the waters of the Amazon carry with it.
- The Amazon basin covers almost half the land of South America, including much of Brazil and parts of Peru, Venezuela, Colombia, Ecuador, and Bolivia.

Top Ten Longest, Top Ten Largest: Famous Rivers of the World

Purpose: Students will become familiar with some of the great rivers of the world, their location, and relative sizes. Collectively, these rivers represent the world’s water resources, as they carry virtually all the water that is available for people and wildlife.

“Longest” refers to the river’s length in miles. “Largest” refers to the total amount of water carried by the river. For example, the Amazon is the largest river in the world, but the Nile is the longest.

Materials: Maps of the world

20 - 8½” x 11” pieces of cardboard.

Procedure:

1. Make 10 cards, each listing the name of one of the 10 longest rivers, the country or continent where it is found, and the length in miles.
2. Pass the cards out and have students work in pairs to find their river on a world map.
3 Have 10 students holding the cards come to the front of the room, and arrange themselves to show the ten longest rivers in order of length.

4 Repeat the activity with the top ten largest rivers.

Table 1:

The Longest Rivers of the World

<table>
<thead>
<tr>
<th>RIVER</th>
<th>LOCATION</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nile</td>
<td>Northeast Africa</td>
<td>4,132 miles</td>
</tr>
<tr>
<td>Amazon</td>
<td>South America</td>
<td>4,000 miles</td>
</tr>
<tr>
<td>Yangtze</td>
<td>China</td>
<td>3,915 miles</td>
</tr>
<tr>
<td>Huang He</td>
<td>China</td>
<td>2,903 miles</td>
</tr>
<tr>
<td>Congo</td>
<td>Africa</td>
<td>2,900 miles</td>
</tr>
<tr>
<td>Missouri</td>
<td>United States</td>
<td>2,714 miles</td>
</tr>
<tr>
<td>Lena</td>
<td>Russia</td>
<td>2,600 miles</td>
</tr>
<tr>
<td>Niger</td>
<td>Africa</td>
<td>2,600 miles</td>
</tr>
<tr>
<td>Yenisei</td>
<td>Russia</td>
<td>2,566 miles</td>
</tr>
<tr>
<td>Parana</td>
<td>Argentina</td>
<td>2,450 miles</td>
</tr>
</tbody>
</table>

Table 2:

The Largest Rivers in the World

<table>
<thead>
<tr>
<th>RIVER</th>
<th>LOCATION</th>
<th>AVERAGE DISCHARGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon</td>
<td>South America</td>
<td>6,350,000 ft³/sec</td>
</tr>
<tr>
<td>Congo</td>
<td>Africa</td>
<td>1,400,000 ft³/sec</td>
</tr>
<tr>
<td>Yangtze</td>
<td>China</td>
<td>1,200,000 ft³/sec</td>
</tr>
<tr>
<td>Parana</td>
<td>Argentina</td>
<td>777,000 ft³/sec</td>
</tr>
<tr>
<td>Orinoco</td>
<td>Venezuela</td>
<td>706,000 ft³/sec</td>
</tr>
<tr>
<td>Brahmaputra</td>
<td>Tibet, India, Bangladesh</td>
<td>706,000 ft³/sec</td>
</tr>
<tr>
<td>Ganges</td>
<td>India</td>
<td>670,000 ft³/sec</td>
</tr>
<tr>
<td>Yenisei</td>
<td>Russia</td>
<td>670,000 ft³/sec</td>
</tr>
<tr>
<td>Mississippi</td>
<td>United States</td>
<td>645,000 ft³/sec</td>
</tr>
<tr>
<td>Lena</td>
<td>Russia</td>
<td>547,000 ft³/sec</td>
</tr>
</tbody>
</table>

Discussion: What is the longest river in your state? What is the largest? Rivers have played very important roles in the course of history. Why are rivers crucial to the survival of people and wildlife?
The Amazon Forest: Where Life Overflows

“The land is one great wild, untidy luxuriant hothouse made by nature for herself.”
—Charles Darwin

As the Amazon River flows to the sea, it also rises to the sky, becoming clouds. Everyday it rains, bringing life to the forest. In every available space, something grows; ferns, vines, mosses, shrubs, orchids and fungi, tiny trees and forest giants that are home to hundreds more clingers, creepers and climbers. The forest is so wet that the trees themselves rain. It smells like life. This is the tropical rainforest.

KEY IDEAS

1. Tropical rainforests form a broken green band around the equator. They receive at least 80 inches of rain per year, and the average temperature is around 77 F.
2. Tropical rainforests cover less than 7% of earth’s land surface, but may hold more than 50% of all species.
3. The Amazon rainforest is the largest expanse of tropical rainforest in the world.
4. Contrary to earlier beliefs, tropical rainforest soils are very poor.
5. Tropical rainforests are complex ecosystems where the survival of one species is directly tied to the survival of many others.

Living Lavishly On Next to Nothing

In the past, people believed the Amazon rainforest was situated on fertile soil because plants grew so well. Now we know that most Amazon soils are very poor. Instead of nutrients from the soil, the terra firma forest depends on rain and rotting vegetation to provide the food needed. As plants die, they feed other plants. Everything is recycled and in balance.

A Fragile Complexity

In this complex ecosystem, the survival of one species is directly tied to the survival of many others. Solving this ecological puzzle can be overwhelming, especially with hundreds of new pieces uncovered each year. Each species plays a slightly different part, and each katydid, treefrog, bat, parrot and monkey, contributes a splash of beauty and excitement to this intense and dramatic world.

ACTIVITY: CHAPTER 2

Where in the World Are Tropical Rainforests?

Purpose: Students will locate the equator, the Tropic of Cancer, and the Tropic of Capricorn on a globe. Students will name the continents that support tropical rainforests.

Materials:

☐ Inflatable globe

Procedure:

1. Place the palm of your hand on the widest part of the globe. (over the equator)
2. Now spin the globe.
3. Your open hand will pass over all of the tropical rainforests of the world.

Discussion: Which continents support tropical rainforests? South America, Africa, Asia, Australia, North America—on the North American continent, there are rainforests in Central America, Hawaii, Puerto Rico, American Samoa, U.S. Virgin Islands. Why do rainforests grow in these places?
Create A Rainforest In a Soda Bottle

Purpose: To demonstrate on a small scale the water and nutrient cycle of the tropical rainforest

Materials:
- Two-liter plastic soda bottle
- Scissors,
- Plastic wrap
- Gravel
- Charcoal (sold for use in fish tank filters)
- Two small tropical plants such as a fittonia, philodendron, prayer plant, artillery plant, etc.
- Potting soil

Procedure:
1. Take the label off the bottle and remove the black bottom, rinse the bottle.
2. Cut the top off the bottle where it begins to curve.
3. Line the detached bottom with plastic wrap that has been folded several times.
4. Spread about one-inch of gravel over the plastic wrap. Spread a thin layer of charcoal over the gravel and fill with potting soil.
5. Dig a little hole in the soil for each of your plants. Place them in the holes and press lightly.
6. Water the plants with about one-third cup of water. Invert and place the plastic cover over the plants forming a dome.
7. Place the terrarium in a spot that will receive a lot of light, but not direct sunlight.
8. Watch your rainforest to see the water released from the plants form droplets on the inside of the dome. These will rain down on the plants and continuously water them. (You might have to add a small amount of water to the soil every few weeks.)

Discussion: Which
The Rainforest Is Closer Than You Think!

To most people, tropical rainforests seem like faraway places that we might dream of visiting. In fact, plant pieces of the mysterious rainforest puzzle play important roles in our daily lives that we either are not aware of or take for granted. Open your closets, medicine cabinets, garages, refrigerators and pantries. Visit a florist, a hospital, a bakery, a theatre, a hardware store, candy store—not to mention a grocery store, and you will quickly realize that rainforests are closer than you think!

Jungle Produce

Every year the average American consumes more than 25 pounds of bananas, and today there are few places in the world where it is not possible to buy a banana. Introduced to Europe in 1882, bananas were the first rainforest fruit discovered by westerners and were originally available by prescription only. “Florida” oranges originally came from the rainforest, as did lemons, limes, and grapefruits. Tomato, potato, pineapple and papaya, cashews, coffee, cloves and corn, all have wild roots in tropical rainforests or other tropical habitats near rainforests. A recent tour at the Brooklyn Botanical Gardens entitled, “Ten Plants That Shook the World,” included six history-changing plants that originated in the tropics. (sugarcane, coffee, corn, bamboo, rubber, quinine, and pepper). Count the number of tropical fruits for sale at your local grocery store. It is only a fraction of the 3,000 types of fruits that grow in the world’s tropical rainforests!

While you’re thanking the rainforest for favorite foods, thank it for life-changing, life-saving medicines, woods, fibers, canes and oils, gums, resins, dyes and houseplants.

Just A Blip On the Screen of Possibilities

Describing the plants of a tropical rainforest is a little like trying to describe the people of New York City or Los Angeles. The plants are every bit as diverse as the people of these two large cities. In spite of decades of exploration and exploitation, scientists have only thoroughly examined about 1% of the hundreds of thousands of rainforest plants. Besides being good for people, new jungle products could be good for the jungle too; if they are properly managed. In many ways, some of which we don’t even understand yet, all of us have a stake in the welfare of tropical rainforests and of the people, wildlife, and plants that thrive in them.

ACTIVITY: CHAPTER 3

Explore the Grocery, Discover the Rainforest!

Purpose: Learners will discover that the local grocery store would be a very different place without tropical rainforests.

Materials:

- List of fruits, vegetables, spices, flavorings, nuts and other food products from tropical rainforests and habitats near tropical rainforests.

<table>
<thead>
<tr>
<th>avocado</th>
<th>banana</th>
<th>grapefruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>guava</td>
<td>lemon</td>
<td>lime</td>
</tr>
<tr>
<td>mango</td>
<td>orange</td>
<td>papaya</td>
</tr>
<tr>
<td>passion fruit</td>
<td>pepper</td>
<td>pineapple</td>
</tr>
<tr>
<td>plantain</td>
<td>potato</td>
<td>sweet potato</td>
</tr>
<tr>
<td>tangerine</td>
<td>tomato</td>
<td>yam</td>
</tr>
<tr>
<td>allspice</td>
<td>black pepper</td>
<td>cardamom</td>
</tr>
<tr>
<td>cayenne (red pepper)</td>
<td>chocolate or cocoa</td>
<td>chili pepper</td>
</tr>
<tr>
<td>cloves</td>
<td>ginger</td>
<td>cinnamon</td>
</tr>
<tr>
<td>nutmeg</td>
<td>paprika</td>
<td>mace</td>
</tr>
<tr>
<td>vanilla</td>
<td></td>
<td>turmeric</td>
</tr>
<tr>
<td>Brazil nuts</td>
<td>cashew nuts</td>
<td>coconut</td>
</tr>
<tr>
<td>coffee</td>
<td>corn</td>
<td>macadamia nuts</td>
</tr>
<tr>
<td>peanuts</td>
<td>rice</td>
<td>sesame seeds</td>
</tr>
<tr>
<td>sugar</td>
<td>tapioca</td>
<td>tea</td>
</tr>
</tbody>
</table>

Procedure:

1. Take a class trip to a local grocery store.
2. Divide the students into groups and have them explore the store for forests products in their...
raw form or as ingredients in processed foods.

3. Assign one group fruits and vegetables, another group spices and flavorings, and a third group nuts and other miscellaneous products.

4. If a trip is not possible, students can search for these products with their parents at home or during family trips to the grocery store.

5. Have students choose a favorite food for further research. In what part of the world did it originate? (tropical America, tropical Asia, tropical Africa). How is the plant used by native people? Is it grown commercially or still harvested from the rainforest?

Discussion: Which

ACTIVITY: CHAPTER 3

Rainforest Recipes

Purpose: Taste some rainforest foods and create rainforest recipes

Materials:

- Selected rainforest foods

Procedure:

1. Purchase some of the products on the list.

2. Taste them in class, and have students work together to create original rainforest recipes to share with parents or younger students.

3. (for example: tropical rainforest citrus salad, chocolate-banana pudding, avocado sun sandwiches, rice surprise (with corn, tomatoes, peanuts and pepper).

Discussion: Which
“If human beings were not so impressed by size alone, they would consider an ant more wonderful than a rhinoceros.”
—E.O. Wilson

As human beings, we live in a sensory world of sight and sound. We are attracted to and impressed by the big and loud, the bold and beautiful. When we imagine tropical rainforests, we summon images of large, colorful parrots, noisy monkeys, enormous snakes and crocodiles, and the big land predators; tigers in tropical Asia and jaguars in the Amazon. But although they are beautiful and interesting, these animals are relatively rare in jungles. The truly dominant creatures of the tropics seized control of a large part of the terrestrial environment long before the first primates, let alone the first human beings, walked the earth. The tropical rainforest is really the Kingdom of the Ants!

There are about 10,000 known species of ants in the world, and scientists think that there may be two or three times that many. And while to us they might seem like little specs scurrying around on a pointless mission, there is a lot of diversity among this group of social insects. The world’s smallest ant forms a colony that could easily fit inside the brain case of the world’s largest ant. Professor E.O. Wilson, the world’s leading myrmecologist, calls ants “the little things that run the world.” He estimates that at any given moment there are about 10^15, or a million billion, ants in the world!

In the Amazon rainforest the ants alone have more than four times the biomass of all of the land vertebrates combined - amphibians, reptiles, birds, and mammals. One millimeter above the ground, where ants exist, things are very different than they seem to people looking down from a thousand times that distance. Instead of a world of sight and sound, ants live in a chemical world. They travel and communicate largely by taste and smell.

In Amazonia, where there are lots of plants and lots of creatures to eat them, the chief herbivores are the famous and fascinating leaf-cutter ants. Their actions remove about 15% of leaf production. It is a common and comical sight to look down and see hundreds of dime-size green leaf-banners marching along in the jaws of the tiny leaf-cutters as they rush back to their nest. The work capacity of leafcutters so impressed E.O. Wilson, that he converted into human terms the speed at which they run and the weight they carry during their leaf-transporting trips.

“If one of these ants were a six-foot-tall person, it would be running along those odor trails at a pace of about 3:45 minutes to the mile. That’s about the current world record. At the end of the trail it would pick up a load of 300 pounds or more—after running roughly the distance of a marathon—and carry it home at the slightly slower pace of four minutes to the mile. Upon reaching the nest, it would run down through the galleries and chambers of the nest for a distance of up to one mile before depositing its leaf load.”

The leafcutter ant kingdom (really a queendom) is a society of females. Like all ants, leafcutters are daughters of the same mother queen. The queen is a huge ant, about half the size of your thumb. She can live for ten, maybe even 20 years, and during her lifetime she gives birth to about 150 million daughters! Each daughter will grow into a soldier or a worker depending on her size, and each will play some role in the maintenance of the colony.

The leaf-cutter ants do not eat the leaves they gather—it is much more complicated than that. They actually turn the fresh vegetation into mushrooms! Here’s how it works:

1. The largest workers gather leaves and bring them to the nest.
2. There they are turned over to a class of slightly smaller workers, which cut the leaves into pieces about a millimeter across.
These pieces are taken over by still smaller workers which chew them into pulp and fertilize with deposits of rich fecal fluid.

Other ants apply the leaf paste over a base of dried leaves in new chambers.

Another group hauls in bits of fungus from older chambers and plants it in the leaf paste.

Meanwhile, a caste of tiny workers cleans and weeds the garden, and then harvests the fruits of the fungus for the entire colony to eat.

The fungus and the leafcutters are completely dependent on each other. The ants eat only the fungus, and the fungus grows nowhere else but in the ant gardens. This story is just one of thousands of symbiotic relationships that form the intricate web of interdependency in a rainforest ecosystem.

Ants are very important to the cycles of life. They make and turn the soil, speed up the process of decay, pollinate, prey on other insects, and are food for a great number of larger animals. A healthy forest is home to many hardworking ants.

Happy Trails

If you’ve seen one ant...you’ve seen something very unusual! Ants are social insects that cooperate in gathering food, defending their nest, and raising baby ants. In order for this huge ant family to accomplish their tasks, they must communicate. Ants and other insects talk to each other using chemicals.

When an ant finds food she leaves a chemical trail on the ground to lead her and her hungry sisters back to the food. This chemical trail contains important ant information.

Purpose: Students will locate an ant colony, or an active trail of ants. They will observe the “scouts” that arrive first at the food, and the streams of followers that use the scout’s chemical trail.

Materials:
- Four pieces of flat cardboard
- Honey
- Two or three active colonies of ants that you’ve found outside

Procedure:
1. Place a large spoonful of honey a few feet away from your ants on a hard surface (like a sidewalk).
2. Surround the honey with the cardboard pieces. Arrange them so that the ants must pass over a piece of cardboard to get to the honey.
3. Once you have at least 40 ants on the path, pick up the piece of cardboard and turn it around so the path has been reversed 180°.
4. Wear gloves - remember some ants can bite!
5. Be careful of little lives. Don’t hurt the ants.
6. Write down your observations.

Discussion: Which

Significant Achievements

- An ant can lift fifty times its own weight. If people could lift like that, we could each lift a car!
- Ants have been around since before the dinosaurs.
- One species of ant can live up to 14 days submerged in water.
- Scientists found 43 different species of ants living in one tree in Peru.
- Some kinds of mound-building ants make nests that are seven feet tall. These nests can last hundreds of years.

Procedure:
1. Find out some more ant facts
2. Draw a cartoon to illustrate an amazing ant fact.
From an airplane, the rainforest canopy looks like vast fields of bulging broccoli. From the forest floor, it looks like a twisted maze of branches, vines and streamers. Both views are misleading. To the millions of plants and animals that live out their entire lives in the roof of the rainforest, the canopy is a sunny paradise with room to scamper across well-traveled branch paths, or even to fly, glide or leap.

The Canopy Takes a Lot of Heat (Wind and Rain Too!)

The canopy is the powerhouse of the rainforest, where more than 90% of photosynthesis takes place and, in the fullest sense, life begins. Wind and pounding rain cause dead leaves and branches to rain down constantly from the canopy. On the floor, they decompose, and are sucked up as nutrients by tree roots, and then returned to the canopy to continue the cycle of life. The brightly lit, noisy world of the rainforest canopy, some 100 feet or more above the floor, is in a lot of ways an undiscovered continent.

A Rottin Place to Live

As photosynthesis is the dominant natural process in the canopy, the forest floor is a dark house of decomposition. Here, the work of nature is carried out by termites, ants, fungi, bacteria and millipedes—the “cleaning crew” of the forest. These organisms break down dead plants and animals into nutrients—and they work fast! Decomposition is so quick in the tropics, that the forest floor is pretty empty. Can you see how these two layers of life—the canopy and the forest floor—are connected?

“To know the forest, we must study it in all aspects, as birds soaring above its roof, as earth-bound bipeds creeping slowly over its roots.”

—Alexander Skutch

ACTIVITY: CHAPTER 5

Swingin’ In the Rain

Animals also have special adaptations for living in the treetops. Monkeys and other primates have prehensile tails, opposable thumbs, tremendous upper-body strength, and large, forward-facing eyes for judging distance.

Purpose: Students will choose a rainforest primate to “profile” and learn the life history of their animal.

Materials:
□ Books about primates,
□ copies of Profile Of A Primate page
□ markers and crayons.

Procedure:
1 Pass out copies of profile page on page 19.
2 Students can work alone or in pairs to record information about their rainforest primate.
Microhabitats

In the canopy, life is piled on top of life. A single large branch, in addition to its own leaves, can be host to hundreds of epiphytes (ferns, orchids, mosses and bromeliads). Epiphytes are plants that do not need to root on the ground, but can grow on other plants. In addition to creating beautiful hanging gardens, epiphytes provide habitat for countless tiny canopy creatures.

Purpose: Look at a cutaway of a bromeliad and identify some animals that call it home. Observe the ways in which a bromeliad is adapted to capture and hold water.

Materials:
- Copies of bromeliad cutaway drawing
- Crayons and markers
- A bromeliad plant from a local plant nursery
- Eyedropper

Procedure:
1. Pass out copies of Bromeliad Microhabitat
2. Students match the numbers on the drawing with the description of each animal.
3. Drop water on the ends of bromeliad leaves. What does the water do? (leaves work like water slides—water rolls down to center of plant)
4. Pour a cup of water in the center of the bromeliad. What happens? (the center of the bromeliad holds water).
5. How are bromeliads adapted to capture and hold water?

Bromeliad Microhabitats

- Frog tadpoles wriggle in the pool. Some frogs lay their eggs here. Others carry newly hatched tadpoles on their backs and drop them off to complete their development.
- A red-eyed treefrog looks around for insects to eat.
- Lying in wait, a daddy longlegs will pounce on mosquitoes and other small insects.
- A slug inches up the side of a leaf. They need bromeliad water to keep their body moist.
- Swimming in the tiny pool, a crab searches for mosquito larvae.
- Mosquito eggs drift at the water surface. Just below the surface, hatched mosquito larvae hang upside-down in the water.
For thousands of years, Indians have lived in the rainforests. Some live in areas so deep and far into the forest that they have not yet been contacted by the outside world. Some live on lands that have been exploited by goldminers and others who have come to take parts of the forest. In many ways, contact with outsiders has been devastating for rainforest Indians. Thousands have died; either from direct killing or from introduced diseases for which Indians have no natural immunity. Over 90 Indian tribes have become extinct in Brazil alone since 1900.

We have all heard the expression “extinction is forever.” This saying is usually heard in conversations about endangered animals or plants. But the extinction of unique groups of people is just as final.

“The beauty and genius of a work of art may be reconceived though its first material expression be destroyed; a vanished harmony may yet again inspire the composer; but when the last individual of a race of living things breathes no more, another Heaven and another Earth must pass before such a one can be again.”

In the South American country of Suriname, there is a saying, Na boesi, ingi sabe ala sani. “In the Jungle, the Indian knows everything.” People from developed countries have sometimes looked upon Indians and their cultures as primitive, simple and crude. Many have tried to change the way Indians live their lives. But when it comes to living in the rainforest—the Indians know best.

Indians thrive in the rainforest because of their astonishing familiarity with this environment. They know which trees make the best canoes and which ones are good for burning or making blowguns or arrows or shelters. They know the plants that yield food, dyes, resins, oils, fibers for weaving and medicines for healing. They grow crops in the rainforest by using ancient slash-and-burn agriculture. The Indians cut the trees in a small area, allow them to dry, then clear the “slash” by burning it. At first, the ash left by the fire makes a nutrient-rich bed for crops. They grow yams, sweet potatoes, bananas, plantains, cocoyams, cassava, and about fifty other crops. The field loses its fertility within a few years, and it is eventually abandoned and allowed to return to jungle. Because Indian populations are low, and because they let their fields lie fallow for a long time after cultivation, they can practice slash-and-burn agriculture without permanently destroying the land. Their use of the forest is sustainable.

Indians hunt and fish, but they learned long ago that if they take more from the forest than they need to live, the forest will kill them slowly but surely. The Indians recognize the forest animals long before they see them, by their footprints, their calls, even their smells. To Indians, the forest is grocery store, drugstore, hardware store, and toy store. As one Peruvian Indian said, “We respect the forest; we make it produce for us.”

Ailton Krenak is the National Coordinator of the Union of Indian Nations. He comes from the small tribe of Krenak Indians of Brazil. He has said to the world;

“If we can build in the heart of the people of the city a beautiful forest made of friendship, music and celebration, then we can pacify their spirit so they can live with the people of the forest. This is our message...”

We have already benefited tremendously from the knowledge of Indians. As ethnobotanist Mark Plotkin has said, “Virtually every useful medicinal or agricultural plant that has come to us from the rainforest was first learned from indigenous people.” The forest Indians have alot more to teach. Will the rest of the world be smart enough to learn from them?
A C TIVITY: C H A P T E R 6

Indians of Amazonia

Directions: Find the names of 12 Amazonian Indian tribes hidden in the puzzle below.

Apalai
Bororo
Huaorani
Jivaro
Kampa
Kayapo
Krenak
Marubo
Tirio
Waiwai
Wayana
Yanomami

A C TIVITY: C H A P T E R 6

Words From the Forest

Because they live in small, sometimes isolated groups, Indians have developed many unique languages. You can learn some words spoken by Amazonian Indians.

In the Language of the Tirio Indians:
HELLO ku-day-mah-nah
GOODBYE ko-ko-ro-pah
FOREST ih-tuh-tuh
JAGUAR ky-kwe

In the Language of the Yanomami Indians:
FRIEND sho-e

In the Language of the Wayana Indians:
A-OKAY! e-pok!

A C TIVITY: C H A P T E R 6

No Waste

Indians make multiple-use of the plants and animals around them. The fruit of a plant might be eaten, and the leaves of that same plant used as medicine. A deer is eaten, and the leg bone is fashioned into a flute. Palms are probably the best example of multiusefulness in the Amazon rainforest.

Directions: Circle the ways in which Indians use parts of palm plants from the forest.

as food as a source of fibers
for fuel for oil
for waxes as medicines
to make toys to build shelters
as backpacks as drinking cups
as bird calls as weapons
to make hammocks for fishing line
for fishing hooks to make hair combs
to make musical instruments

(You should have circled all of these!)
Deep in the jungle of South America, Mark Plotkin found himself face-to-face with a jaguar—the largest and most feared predator of the Amazon rainforest. It entered his hut and silently moved toward him, looking directly into his eyes. Suddenly he woke up, trembling and covered in sweat. He was alone. Had this been a dream or reality? The next morning he sent a message to the shaman of the Indian village. “I have seen the jaguar,” he said. The shaman smiled. “That was me.” Mark still doesn’t know why he had this dream, but it is just one of the incredible experiences he has had since he began working in the jungles of South America.

Dr. Mark Plotkin is an ethnobotanist; a scientist who studies the ways that indigenous people use plants as medicine. If you’ve never heard of ethnobotanists, it’s probably because this field of study has only been around for about fifty years—a very short time in the history of science. Dr. Plotkin and other ethnobotanists use a combination of anthropology, (the study of people and their cultures), and botany, (the study of plants), to learn how indigenous people use plants for healing and other purposes. Mark’s studies have taken him to some very interesting places like Argentina, Colombia, Suriname, Brazil, and Madagascar. Traveling can be hard work sometimes, but Mark really enjoys meeting and working with people from all over the world.

Dr. Plotkin has been fascinated by nature since he was a young boy growing up in New Orleans. He liked going into the swamps to look for snakes, lizards and turtles, and his mother and father encouraged his interests. He went to college to study biology, but didn’t think he was cut out to be confined to a laboratory. Mark moved to Massachusetts to work at the famous Museum of Comparative Zoology at Harvard University. He signed up for a class taught by Richard Evan Schultes, who is known as the “father of ethnobotany.” Mark entered the classroom and everywhere he looked he saw maps of the Amazon, Indian clothing, bows, arrows, blowguns, strange tropical fruits, and beautiful carvings and weavings. Then Professor Schultes turned out the lights and began to show pictures of a strange and wonderful world. Mark was mesmerized by slides of witch doctors, hunters, princesses, Indian children, and pictures of plants that the Indians used for food, medicines and fibers. From that moment on, Mark was hooked! Hooked on plants, hooked on Indians, and hooked on the Amazon. An ethnobotanist was born!

Mark first traveled to the rainforests of South America in 1979. He went to learn about medicinal plants, but soon learned something that he found sad and shocking. The Indians’ priceless knowledge of medicinal plants, developed over thousands of years, was in danger of being lost because no younger Indians were volunteering to become apprentices to the tribal shamans. Mark asked the shamans if he could become their student, and in exchange he would write down what he was taught and preserve this knowledge. The shamans agreed, and Mark began to live with and learn from the Indians. He followed the shamans through the forest that they knew so well, learned their language, and wrote down all they taught him. Then he made a book, as he had promised, and gave it to the Indians. The ancient knowledge was saved! But this is not the end of the story. Other wonderful changes were taking place while Mark was studying with the Indians.

Because Mark respects the Indians and their culture, they also respect him. He became good friends with many of the young Indians; they call him “yah-ko” which means brother. Mark helped the Indians see the importance of preserving their culture and their knowledge of medicinal plants. He worked with them to set up the Shaman’s Apprentice Program. Now the shamans are teachers to their own young people, and they are once

KEY IDEAS

1. Ethnobotanists have found that tribal knowledge of medicinal plants is in danger of being lost if no younger Indians learn from the shamans.
2. Mark Plotkin became an apprentice to the shamans and wrote down what he learned so the knowledge would be preserved.
3. The Shaman’s Apprentice Program encourages partnerships between shamans and younger members of Indian tribes for the purpose of passing information to the next generation.
4. Preserving rainforests and Indian cultures will benefit the entire world.
5. Many of our medicines already come from rainforest plants and ethnobotanists feel that many more are awaiting discovery.
6. The Ethnobiology and Conservation Team (ECT) is dedicated to biodiversity conservation.
again passing on their priceless botanical knowledge to the next generation. The idea worked so well, that other Indian tribes in Central and South America have begun similar programs!

Preserving rainforests and Indian cultures will benefit the entire world. We already use many medicines that come from rainforest plants, and Mark thinks there are still many “wonder drugs” waiting to be found. In 1994 Dr. Plotkin and Costa Rican conservationist Liliana Madrigal founded an organization called The Ethnobiology and Conservation Team (ECT). Mark and Liliana have dedicated their lives to biodiversity conservation. They believe in the sacredness of life and feel that no species should be driven to extinction through ignorance or greed.

Mark Plotkin is a scientist, an author, a teacher, and a conservationist. But he is much more than these words can describe. He is a person whose values and dedication to conservation are really making a difference in this world where sometimes it seems like there is no good news. His work has been, and continues to be, an important contribution to world conservation.

Good News for Kids!

ACTIVITY: CHAPTER 7

What Shamans Know Could Save Your Life

Purpose: Students will learn that many important medicines are derived from tropical plants.

Materials:
- List of medicines derived from tropical plants, encyclopedias, books about medicinal plants (*Medicines From the Earth* and *Seeds of Change* by Henry Hobhouse are good sources).

Procedure: Study the list of medicines derived from rainforest plants and their uses. Why are these medicines important? Invite a pharmacist to visit your class. Talk about how medicines are made and tested.

Though discovery and testing of drugs takes years of painstaking work, scientists have plenty of reason for optimism: More than one-third of the current 121 prescription drugs derived from plants have their origins in the rainforest. Here’s a partial list:

<table>
<thead>
<tr>
<th>DRUG</th>
<th>PLANT</th>
<th>USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropine</td>
<td>Belladonna</td>
<td>asthma</td>
</tr>
<tr>
<td>Cocaine</td>
<td>Coca</td>
<td>anesthetics</td>
</tr>
<tr>
<td>D-tubocurarine</td>
<td>Chondodendron tomentosum</td>
<td>skeletal muscle relaxant</td>
</tr>
<tr>
<td>Diosgenin</td>
<td>Mexican yam</td>
<td>birth control</td>
</tr>
<tr>
<td>Papain</td>
<td>Papaya</td>
<td>chronic diarrhea</td>
</tr>
<tr>
<td>Picrotoxin</td>
<td>Seeds of the Levant berry</td>
<td>convulsions</td>
</tr>
<tr>
<td>Pilocarpine</td>
<td>Pilocarpus</td>
<td>glaucoma</td>
</tr>
<tr>
<td>Quinine</td>
<td>Cinchona</td>
<td>malaria</td>
</tr>
<tr>
<td>Reserpine</td>
<td>Snakeroot</td>
<td>hypertension</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>Rosy Periwinkle</td>
<td>Hodgkin’s disease</td>
</tr>
<tr>
<td>Vincristine</td>
<td>Rosy Periwinkle</td>
<td>Acute Leukemia</td>
</tr>
</tbody>
</table>

Have you ever dreamed of traveling to an unexplored planet; of encountering bizarre animals and plants never before seen by human eyes? Well, pinch yourself, wake up, and get started! You live on the unexplored planet—it’s Planet Earth!

Life Adds Up

For years, scientists believed that there were about 2 million species on earth. But that low number is history! Since scientists began focusing on the tropics, and particularly the canopy of the tropical rainforest, we have learned that we have no idea how many species there are. Ten million is a low estimate, and some say the number could reach 100 million! These new estimates are largely due to the discovery of thousands of insect species, but two new bird species are discovered each year, and scientists occasionally come across unknown monkeys, rodents, and hoofed-animals too. Remember, eleven species of whales were discovered in this century!

Biodiversity is the word commonly used to describe the amazing variety of life found on our planet. It’s a short way of saying “biological diversity,” and it includes everything from blue whales to bacteria, fungi, plants; every living thing. But it’s more than just species. Biodiversity also includes the different ecosystems—like rainforests, wetlands, deserts, grasslands, and coral reefs. And it also includes the variety within species—the genes that make each individual in a species different from the rest.

The great German zoologist Karl von Frish dedicated his life to the study of honeybees. He said the honeybee is like a magic well: the more you draw from it, the more there is to draw. A person can choose any species, study it for a lifetime, and still leave unanswered questions. But as amazing as individual species are, the truly mind-boggling aspect of our planet is that each species is part of a multi-million-piece jigsaw puzzle. All of this glorious life is connected, and humans—that’s right, each one of us—is connected to the puzzle in ways we are just beginning to understand.

Never before has earth had so many species—so much biodiversity. And yet having just discovered that we are living in a biological treasure house, we find that it is in the process of being demolished. We are losing species at a rate not seen since the end of the Age of Dinosaurs, 65 million years ago. Some scientists think that up to one half of all species will disappear in the next 40 years. Why?

Habitat Is Home

Habitats are the places animals live and get the food, water, shelter, and space they need to survive.

Destruction of habitat is the main reason we are losing biodiversity. Other important reasons include:

- Introduced (or exotic) Species
- Pollution
- Human Population Growth
- Over-Consumption of natural resources.

We have a lot of difficult problems to face if we want to turn the tide of biodiversity loss. One thing is for sure, it will take the efforts of each and every one of us. Dr. E.O. Wilson, one of the world’s leading experts on biodiversity says, “The rest of life is the cradle in which the human species evolved. It is very much to our advantage to maintain the cradle.”

Bio-Bits:

- A single tree in a rainforest can be home to more than 1000 species of insects.
- In an area of Amazonia the size of a suburban lawn, one could find 300 species of trees.
- One-fourth of all prescription drugs used today were originally derived from plants. Only 5% of all plants have been studied for medicinal use.
- For every 100 pounds of people, there are 1,000 pounds of termites.
- More than half the Earth’s species are believed
to live in the tropical rainforest. Fewer than 1,500 scientists worldwide are trained to identify tropical organisms.

- To survive, a single harpy eagle requires 39 square miles of rainforest. An eyelash mite spends its entire life in a person’s eyelashes.
- 99% of all species (excluding plants) are smaller than a bumblebee.

ACTIVITY: CHAPTER 8

In Your Own Backyard

Purpose: You don’t have to travel far to see a great deal of biodiversity. If you were to watch any organism in your backyard, you would discover new things that nobody knows about.

Procedure: Have students start a “living things” journal and keep a daily record of the living things they observe as well as their observations of the interdependence of life.

ACTIVITY: CHAPTER 8

Live Simply So That Others May Simply Live

The average American’s energy use is roughly equivalent to that of:

- 2 Japanese
- 6 Mexicans
- 12 Chinese
- 33 Indians
- 147 Bangladeshis
- 281 Tanzanians

 or

- 422 Ethiopians

Since over-consumption of natural resources is one of the reasons for biodiversity loss, start thinking of some ways that you can conserve water, electricity, gas, paper—everything—at school and at home.
Profile of a Primate

Make a drawing of your primate here.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Habitat</th>
<th>Diet</th>
<th>Adaptations for living in the canopy</th>
<th>Gestation</th>
<th>Number of Young</th>
<th>Lifespan (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conservation Status (endangered, threatened etc.) Other Interesting Information
Vocabulary

Andes Great mountain system that forms the western fringe of South America extending through the countries of Colombia, Venezuela, Ecuador, Peru, Bolivia, Chile, and Argentina

tributary A stream that flows into a larger stream or body of water

sediment Matter deposited by wind or water

echolocation The use of reflected sound from an emitter (such as a bat or dolphin) to locate objects

Amazon Basin The region drained by the Amazon River and its tributaries

equator An imaginary circle around the earth equally distant at all points from the North Pole and the South Pole: it divides the earth’s surface into the Northern Hemisphere and the Southern Hemisphere.

ecosystem A system made up of a community of animals, plants, and bacteria and its interrelated physical and chemical environment.

diversity Variety of life

westerner (in this context) A person from America or western Europe

fiber Any substance which may be separated into threads or threadlike structures to be woven or spun. (Fibers are extremely important to the survival of humankind. Rope, baskets, clothing, paper, furniture and fishnets are just a few items made of plant fibers).

exploitation The act of utilizing or turning to one’s own use

social insects Insects that live together in colonies

myrmecologist A scientist who studies ants

biomass The total mass or amount of living organisms in a particular area or volume

herbivore Plant-eating animal

symbiosis The living together of two different organisms in close association, especially where this is advantageous to both

interdependency Mutual dependence

canopy The layer of the forest formed by the crowns of tall trees.

photosynthesis The process by which green plants make food

decomposition The process by which dead plants and animals are broken down into simpler elements (to rot, to decay).

immunity Resistance to a disease. The power to resist infection.

developed country Usually a largely urban and industrialized nation with high levels of income and education.